

ECS455: Chapter 5
 OFDM

Dr.Prapun Suksompong

prapun.com/ecs455

Office Hours:

BKD, 6th floor of Sirindhralai building
Tuesday $\quad 14: 20-15: 20$
Wednesday $14: 20-15: 20$
Friday
9:15-10:15

OFDM Applications

- 802.11 Wi-Fi: a/g/n/ac versions
- DVB-T (Digital Video Broadcasting - Terrestrial)
- terrestrial digital TV broadcast system used in most of the world outside North America
- DMT (the standard form of ADSL - Asymmetric Digital Subscriber Line)
- WiMAX, LTE (OFDMA)

Wireless	Wireline
IEEE 802.11a, $8, \mathrm{n}$ (Wifi) Wireless LANs	ADSL and VDSL. broadband access via POTS copper wiring
IEEE 802.15.3a Ulitra Wideband (UWB) Wireless PAN	MoCA (Multi-media over Coax Alliance) home networking
IEEE 802.16d, e (WiMAX), WiBro, and HiperMAN Wireless MANs	PLC (Power Line Communication)
IEEE 802.20 Mobile Broadband Wireless Access (MBWA)	
DVB (Digital Video Broadcast) terrestrial TV systems: DVB-T, DVB-H, T-DMB, and ISDB-T	
DAB (Digital Audio Broadcast) systems: EUREKA 147, Digital Radio Mondiale, HD Radio, T-DMB, and ISDB-TSB	
Flash-OFDM cellular systems	
3GPP UMTS \& 3GPP@ LTE (Long-Term Evolution) and 4G	

OFDM: Overview

- Let $\underline{\mathbf{S}}=\left(S_{1}, S_{2}, \ldots, S_{N}\right)$ contains the information symbols.

ECS455: Chapter 5
 OFDM

5.1 Implementation: DFT and FFT

Dr.Prapun Suksompong
prapun.com/ecs455

Office Hours:
BKD, 6th floor of Sirindhralai building
Tuesday $\quad 14: 20-15: 20$
Wednesday 14:20-15:20
Friday
9:15-10:15

OFDM and CDMA

- CDMA's key equation $\underline{\mathbf{s}}=\frac{1}{N}(\underline{\mathbf{s}} \mathbf{C}) \mathbf{C}^{T}$
- All the rows of \mathbf{C} are orthogonal
- Key property of \mathbf{C} :

$$
\mathbf{C C}^{T}=N \mathbf{I} .
$$

- For sync. CDMA, we use the Hadamard matrix H_{N}.
- For OFDM, we use DFT matrix Ψ_{N}.
- The matrix is complex-valued.

Discrete Fourier Transform (DFT)

Here, we work with N-point signals (finite-length sequences (vectors) of length N) in both time and frequency domain.

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\mathbf{x}}=\left(\begin{array}{c}
x[0] \\
x[1] \\
\vdots \\
x[N-1]
\end{array}\right) \longrightarrow \mathrm{DFT} \longrightarrow \stackrel{\mathbf{x}}{ }=\left(\begin{array}{c}
X[0] \\
X[1] \\
\vdots \\
X[N-1]
\end{array}\right) \\
& \stackrel{\rightharpoonup}{\mathbf{X}}=\operatorname{DFT}\{\stackrel{\rightharpoonup}{\mathbf{x}}\}=\boldsymbol{\Psi}_{N} \overline{\mathbf{x}}
\end{aligned}
$$

DFT matrix Ψ_{N}

$\boldsymbol{\Psi}_{N}=\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & \psi_{N}^{-1} & \psi_{N}^{-2} & \cdots & \psi_{N}^{-(N-1)} \\ 1 & \psi_{N}^{-2} & \psi_{N}^{-4} & \cdots & \psi_{N}^{-2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \psi_{N}^{-(N-1)} & \psi_{N}^{-2(N-1)} & \cdots & \psi_{N}^{-(N-1)(N-1)}\end{array}\right]$

Element on the p th row and q th column is given by

$$
\psi_{N}^{-(p-1)(q-1)} \text { where } \psi_{N}=e^{j \frac{2 \pi}{N}}
$$

Note that the " -1 " are there because we start from

Key Property: $\boldsymbol{\Psi}_{N}^{-1}=\frac{1}{N} \boldsymbol{\Psi}_{N}^{*} \longrightarrow \frac{1}{\sqrt{N}} \boldsymbol{\Psi}_{N}$ is a unitary matrix

$$
\frac{1}{N} \boldsymbol{\Psi}_{N}^{*} \stackrel{\mathbf{X}}{\downarrow}=\left(\boldsymbol{\Psi}_{N}\right)^{-1} \stackrel{\rightharpoonup}{\mathbf{X}}=\operatorname{IDFT}\{\overrightarrow{\mathbf{X}}\}=\stackrel{\rightharpoonup}{\mathbf{x}} \stackrel{\mathrm{DFT}}{\stackrel{\mathrm{IDFT}}{\rightleftharpoons}} \stackrel{\overrightarrow{\mathbf{X}}}{\mathrm{IF}}=\operatorname{DFT}\{\overrightarrow{\mathbf{x}}\}=\boldsymbol{\Psi}_{N} \stackrel{\rightharpoonup}{\mathbf{x}}
$$

Example: $N=2$

- ψ_{2}
- $\boldsymbol{\Psi}_{2}$
- Suppose $\overrightarrow{\mathbf{x}}=\binom{2}{5} \rightarrow \mathrm{DFT} \rightarrow \overrightarrow{\mathbf{X}}=$

Connection to CDMA

- The rows of $\boldsymbol{\Psi}_{N}$ are orthogonal. So are the columns.
- Proof: Let $\underline{\mathbf{r}}^{(k)}$ be the $k^{\text {th }}$ row of $\boldsymbol{\Psi}_{N}$.

$$
\begin{aligned}
\left\langle\underline{\mathbf{r}}^{\left(k_{1}\right)}, \underline{\mathbf{r}}^{\left(k_{2}\right)}\right\rangle & =\sum_{q=1}^{N} \psi_{N}^{-\left(k_{1}-1\right)(q-1)}\left(\psi_{N}^{-\left(k_{2}-1\right)(q-1)}\right)^{*}=\sum_{q=1}^{N} \psi_{N}^{-\left(k_{1}-1\right)(q-1)} \psi_{N}^{\left(k_{2}-1\right)(q-1)} \\
& =\sum_{q=1}^{N}\left(\psi_{N}^{\left(k_{2}-k_{1}\right)}\right)^{(q-1)}=\sum_{q=0}^{N-1}\left(\psi_{N}^{\left(k_{2}-k_{1}\right)}\right)^{q} \\
& = \begin{cases}\frac{1-\psi_{N}^{\left(k_{2}-k_{1}\right) N}}{1-\psi_{N}^{\left(k_{2}-k_{1}\right)}}=\frac{1-\left(e^{j \frac{2 \pi}{N}}\right)^{\left(k_{2}-k_{1}\right) N}}{1-\psi_{N}^{\left(k_{2}-k_{1}\right)}}=\frac{1-1}{1-\psi_{N}^{\left(k_{2}-k_{1}\right)}}=0, & k_{1} \neq k_{2}, \\
\sum_{q=0}^{N-1}(1)^{q}=N, & k_{1}=k_{2} .\end{cases}
\end{aligned}
$$

11

- So, $\boldsymbol{\Psi}_{N}$ "replaces" the role of \mathbf{H}_{N} in CDMA.

Discrete Fourier Transform (DFT)

Matrix form:

$$
\frac{1}{N} \boldsymbol{\Psi}_{N}^{*} \overrightarrow{\mathbf{X}}=\operatorname{IDFT}\{\overrightarrow{\mathbf{X}}\}=\stackrel{\mathbf{x}}{\underset{\text { IDFT }}{\text { DFT }}} \stackrel{\rightharpoonup}{\mathbf{X}}=\operatorname{DFT}\{\stackrel{\rightharpoonup}{\mathbf{x}}\}=\boldsymbol{\Psi}_{N} \stackrel{\rightharpoonup}{\mathbf{x}}
$$

Pointwise form:

$$
\frac{1}{N} \sum_{k=0}^{N-1} X[k] \psi_{N}^{n k}=\underset{0 \leq n<N}{ } \underset{\text { IDFT }}{\underset{0}{\mathrm{DFT}}} \underset{0 \leq k<N}{ } X[k]=\sum_{n=0}^{N-1} x[n] \psi_{N}^{-n k}
$$

or, equivalently,

$$
\frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{j n k \frac{2 \pi}{N}}=\underset{0 \leq n<N}{ } x[n] \underset{\text { IDFT }}{\text { DFT }} \underset{0 \leq k<N}{ } X[k]=\sum_{n=0}^{N-1} x[n] e^{-j n k \frac{2 \pi}{N}}
$$

Comparison with Fourier transform

$$
x(t)=\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f \stackrel{\mathcal{F}}{\underset{\mathcal{F}^{-1}}{\rightleftharpoons}} x(f)=\int_{-\infty}^{\infty} X(t) e^{-j 2 \pi f t} d t
$$

Efficient Implementation: (I)FFT

[Bahai, 2002, Fig. 2.9]
An N-point FFT requires only on the order of $N \log N$ multiplications, rather than N^{2} as in a straightforward computation

FFT

- The history of the FFT is complicated.
- As with many discoveries and inventions, it arrived before the (computer) world was ready for it.
- Usually done with N a power of two.
- Very efficient in terms of computing time
- Ideally suited to the binary arithmetic of digital computers.
- Ex: From the implementation point of view it is better to have, for example, a FFT size of 1024 even if only 600 outputs are used than try to have another length for FFT between 600 and 1024.
he ilscrete
fourier Transiom

OFDM with Memoryless Channel

$$
\begin{aligned}
& h(t)=\beta \delta(t) \\
& r(t)=h(t) * s(t)+w(t)=\beta s(t)+w(t) \\
& \text { Sample every } T_{s} / N \\
& \text { Additive white Gaussian noise } \\
& r[n]=\beta s[n]+w[n] \\
& \text { FFT } s[n]=\sqrt{N} \operatorname{IFFT}\{s\}[n] \\
& R_{k} \stackrel{\downarrow}{=} \frac{1}{\sqrt{N}} \operatorname{FFT}\{\mathbf{r}\}[n]=\beta S_{k}+\frac{1}{\sqrt{N}} W_{k} \\
& \text { Sub-channel are independent. }
\end{aligned}
$$

(No ICI)

OFDM implementation by IFFT/FFT

ECS455: Chapter 5
 OFDM

5.2 Cyclic Prefix (CP)

Dr.Prapun Suksompong
prapun.com/ecs455

Multipath Propagation

- In a wireless mobile communication system, a transmitted signal propagating through the wireless channel often encounters multiple reflective paths until it reaches the receiver
- We refer to this phenomenon as multipath propagation and it causes fluctuation of the amplitude and phase of the received signal.
- We call this fluctuation multipath fading.

Cyclic Prefix: Motivation

- To reduce the ISI, add guard interval larger than that of the estimated delay spread.
- If the guard interval is left empty, multipath fading will destroy orthogonality of the sub-carriers, i.e., ICI (inter-channel interference) still exists.
- Solution: To prevent both the ISI as well as the ICI, OFDM symbol is cyclically extended into the guard interval.

Cyclic Prefix

Guard interval, $T_{c 0}>\tau_{m}$
Using empty spaces as guard
each symbol

Using cyclic prefix
OFDM symbol length: $T_{s m m}+T_{c p}$ Efficiency: $T_{s, m} /\left(T_{s, m}+T_{c h}\right)$

21

Channel with Finite Memory

Discrete time baseband model:

$$
\begin{aligned}
& y[n]=\{h * s\}[n]+w[n]=\sum_{m=0}^{v} h[m] s[n-m]+w[n] \\
& \text { where } \quad h[n]=0 \text { for } n<0 \text { and } n>v \\
& \\
& \qquad[n] \sim \operatorname{CN}\left(0, N_{0}\right) \quad \text { We will assume that } v \ll N
\end{aligned}
$$

Remarks:
$Z=X+j Y$ is a complex Gaussian if X and Y are jointly Gaussian. If X, Y is i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$, then $Z=X+i Y \sim \mathcal{C N}\left(0, \sigma_{Z}^{2}\right)$ where $\sigma_{Z}^{2}=2 \sigma^{2}$ with
$f_{z}(z)=f_{X, Y}(\operatorname{Re}\{z\}, \operatorname{Im}\{z\})=\frac{1}{\pi \sigma_{z}^{2}} e^{-\frac{\mid I^{2}}{\sigma_{z}^{z}}}$

Circular Convolution

Discussion

- Regular convolution of an N_{1}-point vector and an N_{2}-point vector gives $\left(\mathrm{N}_{1}+\mathrm{N}_{2}-1\right)$-point vector.
- Circular convolution is performed between two equallength vectors. The results also has the same length.
- Circular convolution can be used to find regular convolution by zero-padding.
- Zero-pad the vectors so that their length is $\mathrm{N}_{1}+\mathrm{N}_{2}-1$.
- Example:
$\left[\begin{array}{lllll}1 & 2 & 3 & 0 & 0\end{array}\right] \circledast\left[\begin{array}{lllll}4 & 5 & 6 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] *\left[\begin{array}{ll}4 & 5\end{array}\right.$

Circular Convolution: Examples 1

Find

$$
\left.\begin{array}{l}
{\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] *\left[\begin{array}{lll}
4 & 5 & 6
\end{array}\right]} \\
\text { >> } \operatorname{conv}([1,2,3],[4,5,6]) \\
\text { ans }= \\
4
\end{array} 13 \quad 28 \quad 27 \quad 18\right)
$$

$\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] \circledast\left[\begin{array}{lll}4 & 5 & 6\end{array}\right]$
>> cconv($[1,2,3],[4,5,6], 3)$
ans $=$
ans $=$

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 0 & 0
\end{array}\right] \circledast\left[\begin{array}{lllll}
4 & 5 & 6 & 0 & 0
\end{array}\right]
$$

Circular Convolution in Communication

- We want the receiver to obtain the circular convolution of the signal (channel input) and the channel.
- Q:Why?
- A:
- CTFT: convolution in time domain corresponds to multiplication in frequency domain.
- This fact does not hold for DFT.
- DFT: circular convolution in (discrete) time domain corresponds to multiplication in (discrete) frequency domain.
- We want to have multiplication in frequency domain.
- So, we want circular convolution and not the regular convolution.
- Problem: Real channel does regular convolution.
- Solution: With cyclic prefix, regular convolution can be used to create circular convolution.

Example 2

$\left[\begin{array}{lllll}1 & -2 & 3 & 1 & 2\end{array}\right] \circledast\left[\begin{array}{lllll}3 & 2 & 1 & 0 & 0\end{array}\right]=$? Solution:
[11 points)

```
```

```
1
```

```
1
    0
    0
        0
        0
            0
            0
            0
            0
                0
                0
```

 1\times1+2\times2+1\times3=1+4+3=8
    ```
                            1\times1+2\times2+1\times3=1+4+3=8
                2\times1+1\times2+(-2)\times3=2+2-6=-2
                2\times1+1\times2+(-2)\times3=2+2-6=-2
                            1\times1+(-2)\times2+3\times3=1-4+9=6
                            1\times1+(-2)\times2+3\times3=1-4+9=6
(-2)}\times1+3\times2+1\times3=-2+6+3=
(-2)}\times1+3\times2+1\times3=-2+6+3=
                            3\times1+1\times2+2\times3=3+2+6=11
```

 3\times1+1\times2+2\times3=3+2+6=11
    ```
                            Goal: Get these numbers using regular convolution
Observation: We don't need
to replicate the \(x\) indefinitely.
Furthermore, when \(h\) is
shorter than \(x\), we need only
a part of one replica.

Example 2
\(\left[\begin{array}{lllll}1 & -2 & 3 & 1 & 2\end{array}\right] \circledast\left[\begin{array}{lllll}3 & 2 & 1 & 0 & 0\end{array}\right]=\) ?
Let's look closer at how we carry out the circular convolution operation. Recall that we replicate the \(x\) and then perform the regular convolution (for \(N\)

\section*{Example 2} of the replica and then convolute with the channel.
\(\left[\begin{array}{lllllll}1 & 2 & 1 & -2 & 3 & 1 & 2\end{array}\right] *\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]=\) ?
Copy the last \(v\) samples of the symbols to the beginning of the symbol.


\section*{Example 2}
- We now know that
\(\underbrace{\left[\begin{array}{llllll}1 & 2 & 1 & -2 & 3 & 1\end{array}\right.}_{\text {Cyclic Prefix }} \begin{array}{l}2\end{array}] *\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]=\left[\begin{array}{lllllllll}3 & 8 & \underbrace{1}_{1} & -2 & 3 & 1 & 2\end{array}\right] *\left[\begin{array}{llllll}3 & 2 & 1 & 0 & 0\end{array}\right]\)
- Similarly, you may check that
\[
\left[\begin{array}{lllll}
-\underbrace{-2}_{\text {Cyclic Prefix }} & 1 & 2 & 1 & -3 \\
\hline
\end{array}-2 \begin{array}{l}
1
\end{array}\right] *\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]=\left[\begin{array}{lllllll}
-6 & -1 & \underbrace{6} \begin{array}{lllllll}
2 & 8 & -5 & -11 & -4 & 0 & 1
\end{array}] \\
{\left[\begin{array}{lllllll}
2 & 1 & -3 & -2 & 1
\end{array}\right] \circledast\left[\begin{array}{lllll}
3 & 2 & 1 & 0 & 0
\end{array}\right]}
\end{array}\right.
\]
\(\left[\begin{array}{lllll}1 & -2 & 3 & 1 & 2\end{array}\right] \circledast\left[\begin{array}{lllll}3 & 2 & 1 & 0 & 0\end{array}\right]=\left[\begin{array}{lllll}8 & -2 & 6 & 7 & 11\end{array}\right]\)

\section*{Example 3}
- We know, from Example 2, that
\(\left[\begin{array}{lllllll}1 & 2 & 1 & -2 & 3 & 1 & 2\end{array}\right] *\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]=\left[\begin{array}{lllllllll}3 & 8 & 8 & -2 & 6 & 7 & 11 & 5 & 2\end{array}\right]\) And that
```

[-2 1 2 1 1 -3 -2 1] * [3 2 1] = [-6 -1 6 6 8 8 -5 -11 -4 00 1]

```
- Check that
[ \(\left.\begin{array}{llllllllllllll}1 & 2 & 1 & -2 & 3 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\) * \(\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]\)
\(=\left[\begin{array}{llllllllllllllll}3 & 8 & 8 & -2 & 6 & 7 & 11 & 5 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\) and

\(=\left[\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & -6 & -1 & 6 & 8 & -5 & -11 & -4 & 0 & 1\end{array}\right]\)

\section*{Example 4}
- We know that
\(\left[\begin{array}{rrrrrrr}1 & 2 & 1 & -2 & 3 & 1 & 2\end{array}\right] *\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]=\left[\begin{array}{rrrrrrrrr}3 & 8 & 8 & -2 & 6 & 7 & 11 & 5 & 2\end{array}\right]\)
\(\left[\begin{array}{l}-2\end{array} 1\right.\) 2
- Using Example 3, we have
\[
\left[\begin{array}{llllllllllllll}
1 & 2 & 1 & -2 & 3 & 1 & 2 & -2 & 1 & 2 & 1 & -3 & -2 & 1
\end{array}\right] \text { * }\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
\]
\(\left.=\left(\begin{array}{rrrrrrrrrrrrrr}{[ } & 1 & 2 & 1 & -2 & 3 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ +[ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 1 & 2 & 1 & -3 & -2 \\ 1\end{array}\right]\right) *\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]\)
\(\left.=\begin{array}{rrrrrrrrrrrrrrrr}{\left[\begin{array}{llllllllll} & 3 & 8 & -2 & 6 & 7 & 11 & 5 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]} \\ \mathbf{0} & 0 & 0 & 0 & 0 & 0 & 0 & -6 & -1 & 6 & 8 & -5 & -11 & -4 & 0 & 1\end{array}\right]\)
\(=\left[\begin{array}{llllllllllllllll}\mathbf{3} & 8 & 8 & -2 & 6 & 7 & 11 & \mathbf{- 1} & \mathbf{1} & 6 & 8 & -5 & -11 & -4 & 0 & 1\end{array}\right]\)

\section*{Putting results together...}
- Suppose \(\underline{x}^{(1)}=\left[\begin{array}{lllll}1 & -2 & 3 & 1 & 2\end{array}\right]\) and \(\underline{x}^{(2)}=\left[\begin{array}{lllll}2 & 1 & -3 & -2 & 1\end{array}\right]\)
- Suppose \(\underline{h}=\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]\)
- At the receiver, we want to get
- \(\left[\begin{array}{lllll}1 & -2 & 3 & 1 & 2\end{array}\right] \circledast\left[\begin{array}{lllll}3 & 2 & 1 & 0 & 0\end{array}\right]=\left[\begin{array}{lllll}8 & -2 & 6 & 7 & 11\end{array}\right]\)
- \(\left[\begin{array}{lllll}2 & 1 & -3 & -2 & 1\end{array}\right] \circledast\left[\begin{array}{llll}3 & 2 & 1 & 0 \\ 0\end{array}\right]=\left[\begin{array}{lllll}6 & 8 & -5 & -11 & -4\end{array}\right]\)
- We transmit [ \(\left.\begin{array}{lllllllllllll}1 & 2 & 1 & -2 & 3 & 1 & 2 & -\underbrace{2}_{\text {Cyclic prefix }} 1 & & 2 & 1 & -3 & -2 \\ \text { Cyclic prefix }\end{array}\right]\).
- At the receiver, we get
[ \(\left.1 \begin{array}{llllllllllllll}1 & 2 & 1 & -2 & 3 & 1 & 2 & -2 & 1 & 2 & 1 & -3 & -2 & 1\end{array}\right]\) * \(\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]\)
\(=[\underbrace{38} 8\)


\section*{Circular Convolution: Key Properties}
- Consider an \(N\)-point signal \(x[n]\)
- Cyclic Prefix (CP) insertion: If \(x[n]\) is extended by copying the last \(v\) samples of the symbols at the beginning of the symbol:
\[
\hat{x}[n]= \begin{cases}x[n], & 0 \leq n \leq N-1 \\ x[n+N], & -v \leq n \leq-1\end{cases}
\]
- Key Property 1:
\[
\{h \circledast x\}[n]=(h * \hat{x})[n] \text { for } 0 \leq n \leq N-1
\]
- Key Property 2:
\[
\{h \circledast x\}[n] \xrightarrow{\mathrm{FFT}} H_{k} X_{k}
\]
\(\mathbf{h}=(h[0], h[1], h[2], \ldots h[v]) \quad \mathbf{H}=\operatorname{FFT}(\underset{\sim}{\tilde{\mathbf{h}}})\)

\section*{OFDM with CP for Channel w/ Memory}
- To send \(N\) samples \(\mathbf{S}=\left(S_{0}, S_{1}, \ldots, S_{N-1}\right)\)
- First apply IFFT with scaling by \(\sqrt{N}: \tilde{\mathbf{s}}=\sqrt{N} \operatorname{IFFT}(\mathbf{S})\)
- Then, add cyclic prefix
\[
\mathbf{x}=[\tilde{s}[N-v], \ldots, \tilde{s}[N-1], \tilde{s}[0], \ldots, \tilde{s}[N-1]]
\]
- This is inputted to the channel
- The channel output is \(\mathbf{y}=\mathbf{x}^{*} \mathbf{h}\) which can be viewed as
\[
\mathbf{y}=[p[N-v], \ldots, p[N-1], r[0], \ldots, r[N-1]]
\]
- Remove cyclic prefix to get \(\mathbf{r}\). (We know that \(\mathbf{r}=\tilde{\mathbf{s}} \circledast \mathbf{h}\).)
- Then apply FFT with scaling by \(1 / \sqrt{\sqrt{N}}: \tilde{\mathrm{R}}=\frac{1}{\sqrt{N}} \mathrm{FFT}(\mathrm{r})\)
- By circular convolution property of DFT,
\(\mathbf{r}=\tilde{\mathbf{s}} \circledast \mathbf{h} \longrightarrow R_{k}=H_{k} \tilde{S}_{k} \longrightarrow \tilde{R}_{k}=H_{k} S_{k} \longrightarrow S_{k}=\frac{\tilde{R}_{k}}{H_{k}}\)

\section*{MATLAB Example (1/2)}

\section*{S = [llllllll \(\left.1 \begin{array}{lllll}1 & -1 & 2 & 4 & 5 \\ -1 & 2 & -3\end{array}\right] ;\) data stream}
h = [1 0.3 0.1];
\% OFDM transmitter
\(\mathrm{N}=4\);
\(\mathrm{n}=\) length(S)/N;
St = (reshape(S,N,n)).';
\% Number of data blocks
\% Reshape stream to matrix for
\% easier addition of cyclic prefix
\% Calculate the IFFT with scaling

\(\mathrm{v}=\) length(h)-1;
(row-wise)
\(x t=[\operatorname{st}(:(N-(v-1)): N) s t]\).
\% Add Cyclic Prefix


\section*{MATLAB Example (2/2)}
\% Convolve with channel
\(y=\operatorname{conv}(x, h)\);
\(\mathrm{H}=\mathrm{fft}([\mathrm{h} \operatorname{zeros}(1, \mathrm{~N}-\mathrm{v}-1)])\);
\% OFDM receiver
\(y=y(1:((N+v) * n))\)
yt = reshape(y,(N+v),n).';
revt(:,v+1:v+N),
Rt = (1/sqrt(N))*fft(r,[],2);
```

y=

```
\% Reshape matrix for easier \% removal of cyclic prefix
\% Eliminate junk (cyclic prefix)
\% Calculate the FFT with scaling

\% "Equalization"
S_hatt \(=\) zeros(size(Rt));
for i=1:length(H)
S_hatt(:,i) = Rt(:,i)/H(i);
S_hat = reshape(S_hatt.',1,N*n)


\section*{OFDM System Design: CP}
- A good ratio between the CP interval and symbol duration should be found, so that all multipaths are resolved and not significant amount of energy is lost due to CP.
- As a thumb rule, the CP interval must be two to four times larger than the root mean square (RMS) delay spread.


\section*{Summary}
- The CP at the beginning of each block has two main functions.
- As guard interval, it prevents contamination of a block by ISI from the previous block.
- It makes the received block appear to be periodic of period N.
- Turn regular convolution into circular convolution
- Point-wise multiplication in the frequency domain

\section*{Reference}
- A. Bahai, B. R. Saltzberg, and M. Ergen, Multi-Carrier Digital Communications:Theory and Applications of OFDM, 2nd ed., New York: Springer Verlag, 2004.


\section*{OFDM Architecture}


AGC/Coarse
Synchronization```

